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4 Noise in Communication Systems 
 

4.1 Definition of Noise 

 
Noise can be defined as any unwanted signals, random or deterministic, which interfere 

with the faithful reproduction of the desired signal in a system. Stated another way, any 

interfering signal, which is usually noticed as random fluctuations in voltage or current 

tending to obscure and mask the desired signals is known as noise. These unwanted 

signals arise from a variety of sources and can be classified as man-made or naturally 

occurring. 

Man-made types of interference (noise) can practically arise from any piece of elec- 

trical or electronic equipment and include such things as electromagnetic pick-up of 

other radiating signals, inadequate power supply filtering or alias terms. Man-made 

sources of noise all have the common property that their effect can be eliminated or at 

least minimised by careful engineering design and practice. 

Interference caused by naturally occurring noise are not controllable in such a direct 

way and their characteristics can best be described statistically. Natural noise comes 

from random thermal motion of electrons, atmospheric absorption and cosmic sources. 

 
 

4.2 Statistical Description of Signals 

 
Since noise is mostly random in nature, it is best described through its statistical prop- 

erties. In this section the main parameters and in-between relations for noise descrip- 

tion are presented and analysed. Without going into details of random variables and 

stochastic processes, expressions are developed to describe noise through its power 

spectral density (frequency domain) or equivalently the auto-correlation function (time 

domain). This section gives a quick review of some elementary principles, a full de- 

scription can be found in literature [Papoulis, 1984, Proakis, 1989]. It should be noted 

that the description is valid for both random and deterministic signals. 
 

 

4.2.1 Time-Averaged Noise Representations 

 
In forming averages of any signal, whether random or deterministic, we find parameters 



 

 

{ } T n(t) = E n(t) = η = lim 
T →∞ T −T/2 

which tell us something about the signal. But much of the detailed information about 

the signal is lost through this process. In the case of random noise, however, this is the 

only useful quantity. 

Suppose n(t) is a random noise voltage or current. A typical waveform is illustrated 

in Fig. 4.1. We now define the following statistical quantities of n(t): 
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Figure 4.1: A random noise waveform and its average value 

 
 
Mean Value 

 
The mean value of n(t) will be refered to as n(t), ηT or E{n(t)}. It is given by: 

1  
∫ T/2 

 

where n(t) is often referred to as dc or average value of n(t). For practical calculation 

of the mean value, the averaging time T has to be chosen large enough to smooth the 

fluctuations of n(t) adequately. Fig. 4.1 shows the averages n(t) calculated by sliding 

a window centred at t and extending from t − T/2 to t + T/2 over n(t). It is seen that 

for small averaging time T = 5 ms there is still a considerable amount of fluctuation 

present whereas for T = 400 ms the window covers the whole time signal which results 

in a constant average value. 
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n2(t) = lim 
T →∞ T 

n2(t) = n(t) + lim 
T →∞ T 

−T/2 

−T/2 

 

Mean-Square Value 
 
 
 
 

n2(t) = E{n
2
(t)} = lim 1 

∫ T/2 

 
 

 

|n(t)|2dt. (4.2) 
T →∞ T −T/2 

 
 

Aside from a scaling factor the mean-square value n2(t) in (4.2) gives the time av- 

eraged power P of n(t). Assuming n(t) to be the noise voltage or current, the scaling 

factor will be equivalent to a resistance, which is often set equal to 1 Ω. The square 

root of n2(t)  is known as the root-mean-square  (rms) value of n(t).  The advantage  of 
 

 
 

the rms notation is that the units of n2(t) are the same as those for n(t). 

 
 

AC Component 

 
The ac or fluctuation component σ(t) of n(t) is that component that remains after “re- 

moving” the mean value n(t) and is defined as (see also Fig. 4.2): 
 

σ(t) = n(t) − n(t). (4.3) 

 
Variance 

 
 

 

The variance σ2(t) defined by: 
 
 

σ2(t) = E{σ2
(t)} = E{(n(t) − n(t))

2} = lim 1 
∫ T/2 

 
 

 
|σ(t)|2dt (4.4) 

T →∞ T −T/2 
 

is equal to the power of the ac component of n(t) (aside from a resistance scaling 

factor). This can be showed by substituting (4.3) into (4.2) giving: 

1  
∫ T/2 

 

 

Using the fact that n(t) is a constant and that the mean of σ(t) is zero by definition, 

we get: 

. . 1  
∫ T/2 

 

In the above equation, the time averaged power of n(t) is written as the power sum of 

the dc and ac signal components. The variance is a measure of how strong the signal 

is fluctuation about the mean value. 

|n(t)+ σ(t)|2dt. (4.5) 

|σ(t)|2dt. (4.6) 
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Figure 4.2: AC component and variance of random noise waveform 

 
Validity of Time-Based Statistics 

 
Mathematically noise is modeled as a stochastic process, where the noise can be 

considered as the realization of a random variable. Consider the stochastic process 

x(t), at time instance t1, x(t1) is a randome  variable;  its expected  value (mean)  is  

η(t1) = E{x(t1)}, and can be estimated by observing N samples (i.e. realizations) 
x(t1, ξi) through: 

1 Σ 
η̂(t  ) = x(t  , ξ ) (4.7) 

where it can be shown that η̂(t1) is a consistent estimator of η(t1). However, the above 

expression can only be used if a large number of realizations x(t1, ξi) of x(t1) are avail- 

able. In many applications this is not the case and mostly only a single sample (real- 

ization) of x(t, ξ1) is available. We therefore estimate η(t) in terms of the time average 

of the given sample. For this to be possible, first, E{x(t)} should not depend on t; in 

this case x(t) is called a stationary process. To arrive at the second condition, we form 

the time average according to: 

 
ηT = 

1 
∫ T/2 

 
 

 
x(t)dt. (4.8) 

T 

which is a random variable with mean: 

−T/2 

1 T/2 

E{ηT } = 
T

 
−T/2 

E{x(t)} = η. (4.9) 
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Now if the time average ηT computed from a single realization of x(t) tends to the 

ensemble average η as T → ∞ then the random process is called mean-ergodic. 

As such, for ergodic random processes a single time realization can be used to obtain 

the moments of the process. Thus, the expressions in (4.1) to (4.6) are only correct if 

the stochastic process is both stationary and ergodic [Papoulis, 1984, Proakis, 1989]. 

In addition, since the measuring time T is finite the quantities are only estimated values 

of the moments. In practice, the only quantity accessible to measurements is n(t), 

which forces us to assume a stationary, ergodic stochastic process. 

 
Drill Problem 33 Calculate the (a) average value, (b) ac component, and (c) rms value 

of the periodic waveform v(t) = 1 + 3 cos(2πft). 

Drill Problem 34 A voltage source generating the waveform of drill problem 33 is con- 

nected to a resistor R = 6 Ω. What is the power dissipated in the resistor? 

 

4.2.2 Fourier Transform 

 
The definition of the Fourier transform [Stremler, 1982] is given by 

F (f ) = F{f (t)} = 

∫ ∞ 

f (t)e−j2πftdt (4.10) 
 

and the inverse Fourier transform 

f (t) = F−1{F (f )} = 
∞ 

F (f )ej2πftdf. (4.11) 
−∞ 

If the signal f (t) is a power signal, i.e., a signal with finite power but infinite energy, 

the integral in (4.10) will diverge. However, considering the practical case of a finite 

observation time T and assume that the signal is zero outside this interval, is equivalent 

to multiplying the signal by the unit gate function rect(t/T ). In this case the Fourier 

transform can be written as: 

FT (f ) = F{f (t)rect(t/T )} = 
T/2 

 
−T/2 

f (t)e− 
j2πftdt (4.12) 

 

Note that the multiplication by the rect-function in the time domain is equivalent to a 

convolution by a sinc-function in the frequency domain. 

 

4.2.3 Correlation Functions 

 
In the following, two statistical functions are introduced which can be used to investigate 

the similarity between random functions.

−∞ 



 

 

Auto-Correlation Function 

 

The auto-correlation function E{f ∗(t)f (t + τ )}  =  Rf (τ ) of a signal f (t) is defined as 
[Stremler, 1982]: 

E{f 
∗(t)f (t + τ )} = Rf (τ ) =  lim 1 

∫ T/2 
 f ∗(t)f (t + τ )dt (4.13) 

T →∞ T −T/2 

where f ∗(t) is the complex conjugate of f (t). Note that the subscript f is added to 

the autocorrelation funciton R(τ ) to indicate the random variable or function that is 

considered. The auto-correlation function (4.13) is often used in signal analysis, it 

gives a similarity measure of the signal f (t) with itself versus a relative time shift by 

an amount τ . For slowly varying time signals, the signal values doesn’t change rapidly 

over time which will result in a flat auto-correlation function Rf (τ ). Noise signals on the 

other hand, tend to have rapid fluctuations giving rise to an auto-correlation function 

with a sharp peak for τ = 0 (no time shift) and quickly falling to zero for increasing τ . 

As an example Figs. 4.3 and 4.4 show the time signals and the corresponding auto- 

correlation functions for both an exponential and a random noise signal. 
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Figure 4.3: Time signal and auto-correlation function of exponential waveform 

 
When dealing with random variables, the auto-correlation function Rf (τ ) is a statisti- 

cal quantity describing the stochastic process. Note that setting τ = 0 in (4.13) yields 

Rf (0) = E{f 
2
(t)} = f 2(t) which is the average power of the signal as is readily seen 

by comparing to (4.2). Again, we note that the definition of Rf (τ ) as given by (4.13) is 

only valid if the stochastic process is both stationary and ergodic. 

It can be shown, that taking the Fourier transform (with respect to τ ) of both sides of 

(4.13) yields [Proakis, 1989]: 
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Figure 4.4: Time signal and auto-correlation function of random noise waveform 

 
Thus we arrive at the important conclusion, that the correlation integral resulting in 

Rf (τ ) corresponds to a multiplication in frequency domain. Or, equivalently we can say 

that instead of evaluating the integral in (4.13) we can calculate the Fourier transform 

of f (t) according to (4.12), determine |FT (f )|2 and use the inverse Fourier transform 

to get Rf (τ ). The limit for T →  ∞ in (4.14) mainly reminds us of the finite observation 

time, practically this limit means that we have to observe the signal for a sufficient time 

period. 

 

Cross-Correlation Function 

 
A function closely related to the auto-correlation function, which can be used as a 

similarity measure between two different signals, is the cross-correlation function. For 

two waveforms f (t) and g(t), the cross-correlation function E{f ∗(t)g(t + τ )} = Cfg(τ ) 

is defined as 

E{f 
∗(t)g(t + τ )} = Cfg(τ ) = lim 1 

∫ T/2 
 

 

 
f ∗(t)g(t + τ )dt (4.15) 

T →∞ T −T/2 

 

The auto-correlation is considered a special case of the cross-correlation, since it can 

be obtained by setting f (t) = g(t) in (4.15). The interpretation of the cross-correlation 

between two signals is similar to that of the auto-correlation, with the advantage that 

additional information, such as the time shift between two similar signals can be de- 

duced. 

In general, it can be shown that when uncorrelated signals are added, the average 

power of the sum is equal to the sum of the average powers of the signals. 
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Figure 4.5: Time signal and auto-correlation function of exponential waveform plus 

noise 

 
A useful application of the correlation function, is the detection of signals masked by 

additive noise. Fig. 4.5 shows the time waveform g(t) which results when the random 

noise n(t) from Fig. 4.4 is added to the signal s(t) of Fig. 4.3. It is seen that the signal 

waveform is immersed in a considerable amount of noise and it would be difficult to 

detect s(t) out of g(t). However, the auto-correlation function Rs(τ ) can clearly be 

recognized from the auto-correlation of the summed signals Rs+n(τ ). The detection 

of signals masked by additive noise is a main issue when dealing with communication 

systems. 

 
Drill Problem 35  Consider two functions f (t)  =  sin(2πft) and g(t)  =  sin(2πft + θ). 

Find the expression for the cross-correlation function Cfg(τ ) of the two functions. Com- 

pute the value of Cfg(τ ) for θ = 0,  π/4, and π/2 rad. Note that the first case represents 

the auto-correlation of sin x, and the last is the cross-correlation of sin x with cos x. 

 
Drill Problem 36 Two voltage sources v1(t) and v2(t) are connected in series such 

that the resulting voltage vs(t) = v1(t) + v2(t). Calculate the total power of vs(t) (1 Ω 

scaling) assuming the signals of the two voltage sources to be completely uncorrelated 

with each other, i.e. Rv1 v2 (τ )  = Rv2 v1 (τ ) ≡ 0. The signals v1(t) and v2(t) are assumed 

to have rms voltages of 3V and 5V respectively. 

 

4.2.4 Power Spectral Density 

 
In the following, we will be dealing with truncated signals, i.e. the signals are only con- 

sidered within a finite time interval [−T/2,T/2] thus assuming the signal to be zero out- 
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side this interval. The mathematical representation is not as strait forward as for infinite 

time signals, however, practical consideration show that this extra effort is needed. 

Parseval’s theorem for truncated signals state that: 
 

T/2 

 
−T/2 

|f (t)| dt = 
∞ 

|FT (f )|2df. (4.16) 
−∞ 

 

Noting the similarity between the first term in (4.16) and the time averaged power P 

of a signal as given in (4.2) we write: 
 

P = lim 
1 
∫ T/2 

 

 

 
|f (t)| dt = lim 

1 
∫ 

∞ 
 

 

|FT (f )|2df. (4.17) 

T →∞ T −T/2 T →∞ T −∞ 

 

The first integral in the equation above is easy to understand, it shows that in order 

to obtain the total power of a signal we must add together the power contribution of 

each time increment, which is done through the integration over time t. Whether we 

are dealing with voltage or current is indifferent if we assume a 1 Ω resistance. We 

know, that evaluating the integral over a finite time period, will give us the signal power 

within this time. The first integral is thus also valid over each time interval. However, 

Parseval’s equation suggests a second procedure to calculate the total power, which 

is performed in the frequency domain. The last term in (4.17) shows that the summa- 

tion of |F (f )|2 over all frequencies f will also result in the total power P . Defining a 

power spectral density function S(f ) in units of Watts per Hz such that its integral over 

frequency is equal to the total power, gives: 
∫ ∞ 

S(f )df = lim 
1 
∫ ∞ 

|F (f )|2df. (4.18) 

−∞ T →∞ T −∞ 

 

In addition, we insist that S(f ) also gives the power over each frequency increment, 

which means that the integration of the power density function over a frequency range 

∆f will give the total power for this frequency interval. It can be shown, that under 

certain conditions –which are fulfilled for most practical signals of interest– S(f ) is 

related to |FT (f )|2 through: 

S(f ) = lim 
T →∞ 

|FT (f )|2
 

 
 

T 
. (4.19) 

Through (4.14) the relation between the power spectral density and the Fourier trans- 

form of the auto-correlation function is given: 

S(f ) = F{Rf (τ )} (4.20) 

When evaluating the distribution of noise power over frequency, the power spectral 

density S(f ) should be the function to examine, rather then the Fourier transform. The 

∫ ∫ 

T 



 

 

2 

 

reason for this, is, that the Fourier transform of a random quantity (cf. the expression 

in (4.12)) is also a random quantity, which in this sense does not give us any useful 

information. As we know, for random signals we need to investigate the statistical prop- 

erties. Thus in case we are interested in the frequency content of noise, we compute 

the Fourier transform of the auto-correlation function as given in the expression above. 

Using (4.17), (4.18) and (4.13) we get: 
 
 

 

P = f 2(t) = lim 
1 
∫ T/2 

 
 

|f (t)| dt = 

∫ ∞
 
 
S(f )df = Rf (0) (4.21) 

T →∞ T −T/2 −∞ 

 

The above expression can be used to calculate the total power using either the time 

domain signal, the power spectral density function, or the auto-correlation function. 

Care must be taken, when the resistive scaling factor is not equal to 1 Ω. 

 
 

4.3 Noise in Linear Systems 

 
When designing and characterizing communication systems, noise is an important pa- 

rameter which must be accounted for. In general, the different physical noise sources 

in addition to other man-made noise sources contribute to the total noise in the system. 

In the following, noise in linear time invariant (LTI) systems is investigated. 

 
 

4.3.1 Band Limited White Noise 

 
The power spectral density shall be used to describe noise. Knowing that random 

noise tends to have rapid fluctuations, we assume a noise voltage n(t) having the 

auto-correlation function: 
R (τ ) = 

No 
δ(τ ) (4.22) 

n 
2
 

where δ(τ ) is the impulse function. Thus, Rn(τ ) is zero for all τ ̸= 0, which indicates 

completely uncorrelated noise signal except for zero time shift. Taking the Fourier 

transform of Rn(τ ) the power spectral density is: 

Sn(f ) = F{Rn(τ )} = No/2 [Watt/Hz] (4.23) 

 
The power spectral density is constant for all frequencies, thus it contains all fre- 

quency components with equal power weighting. This type of noise is designated as 

white noise in analogy to white light. The factor of one-half in (4.23) is necessary to 

have a two-sided power spectral density. 
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∫ 

→ ∞ 

∫ 

∫ 

n 

N0 

y 

 

A problem arises when we try to calculate the total power of white noise, since: 
 

P  = 
∞  No 

df (4.24) 

−∞  2 

which implies an infinite amount of power and thus cannot be used to describe any 

physical process. 

However, it turns out to be a good model for many cases in which the bandwidth is 

limited through the system. In this case the power spectral density can be assumed flat 

within the finite measuring bandwidth, which will restrict the total noise power. What 

we are dealing with in this case is band-limited white noise which will appear as white 

noise to the measuring system. 

The power of band-limited white noise is independent of the choice of operating 

frequency f0. If n(t) is zero-mean white noise with the power spectral density equal to 

No/2 Watts per Hz, then across a bandwidth B the noise power is 

 
Pn = 

∫ f0+B/2 N0
 

 

 
df + 

∫ −f0+B/2 N0
 

 

 

B/2 

df = 2 df = BNo Watt (4.25) 
f0−B/2 2 −f0−B/2 2 −B/2 2 

 
 

4.3.2 Transmission of Noise Through an LTI System 

 
The transformation of an input signal x(t) through a linear time invariant (LTI) system  

is described in the time domain through the convolution integral: 

y(t) = 
∞ 

x(t)h(t − τ )dτ (4.26) 

−∞ 

where y(t) is the output signal and h(t) is the impulse response of the LTI system. If the 

input signal is random, what we are interested in is the power spectral density Sy(f ) of 

the output signal. Substituting (4.26) into (4.13) and performing a transformation of 

variables we obtain the auto-correlation function of the output signal [Proakis, 1989]: 

R (τ ) = 

∫ ∞ ∫ ∞ 

R (τ + α − β)h∗(α)h(β)dαdβ (4.27) 
−∞ −∞ 

from which Sy(f ) is obtained through (4.20): 

Sy(f ) = F{Ry(τ )} = Sx(f )|H(f )|2 (4.28) 

 
Thus, we have the important result that the power density spectrum of the output 

signal is the product of the input power density spectrum multiplied by the magnitude 

squared of the frequency transfer function.   If the auto-correlation function is desired, 

x 
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2 

∫ 

Sin(f) 
R 

Sout(f) 

 

it is usually easier to compute the power density spectrum through (4.28) and than 

perform the inverse transform: 

Ry(τ ) = F−1{Sy(f )} = F−1{Sx(f )|H(f )|2} (4.29) 

 
If the random input signal is white noise ni(t) with a power spectral density No/2, 

then (4.28) becomes: 

Sout (f ) = 
No 

|H(f )|2 (4.30) 
 
 

Drill Problem 37 A white noise voltage of power spectral density Sin(f ) = N0/2 is 

fed to the lowpass filter illustrated in Fig. 4.6. For the output noise, determine the 

expression for (a) the power spectral density, (b) the autocorrelation function, and (c) 

the total power. 
 
 
 
 

L 

Figure 4.6: RL lowpass filter 

 
 

 
4.3.3 Equivalent Noise Bandwidth 

 
The total noise output power from a system with known frequency transfer function 

|H(f )| can be calculated using (4.28) and (4.21). If the input noise is white, this be- 

comes: 

Pout = 
∞ 

S 
−∞ 

 

out (f )df = No ∫ ∞ 

|H(f )|2df. (4.31) 
 

The integral is a constant for a given system frequency transfer function. We would 

like to have a simple expression similar to (4.25) for the output noise power. A reason- 

able approach would be to define an equivalent noise bandwidth BN of an ideal filter 

such that the output noise power from the ideal filter and the real system are equal. 

As shown in Fig. 4.7, we assume that the ideal filters frequency transfer function is flat 

and equal to H(fo) within the bandwidth BN around the centre frequency fo and zero 

otherwise. 

0 
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Figure 4.7: A graphical definition of the equivalent noise bandwidth 

 
Thus, the output noise power of the ideal filter is: 

 
fo+BN /2 

Pout =   No 

∫

 |H(fo)| df 

fo−BN /2 

= No|H(fo)|2 fo + BN /2 − fo + BN /2 

=   No|H(fo)|2BN . (4.32) 

 
Equating the right hand sides of (4.32) and (4.31), we have: 

∫∞ 

|H(f )|2df 
 BN = 0 

|H(fo)|2 

[Hz]. (4.33) 

 

This definition of the equivalent noise bandwidth BN allows us to discuss practical 

linear systems by using their idealized equivalents. 

 
Drill Problem 38 Compute the equivalent noise bandwidth and the 3-dB bandwidth of 

the lowpass filter of drill problem 37 with R = 30 Ω and L = 25 mH. Then compute the 

output noise power for Sin(f ) = N0/2 = 20 × 10−3 W Hz−1. 

 
4.3.4 Signal-to-Noise Ratio 

 
 

Let the input signal power for a given device be s2 (t) and let the input noise power of 

the device be n2 (t). The input signal-to-noise ratio SNRin is defined as the ratio of the 

total available signal power to the total available noise power at the input and is given 

by 

SNRin = 

 

s2 (t) 
 

 

n2 (t) 
(4.34) 

|H(fo)|2 Equal areas 
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Thus the SNR as defined above gives an indication of the amount of noise power 

relative to the signal power. Clearly the signal-to-noise ratio at the output of the device 

is analog to the above expression. Also the definition of the signal-to-noise ratio is 

independent of the noise source and type. 

The SNR is a power ratio which is most often expressed in Decibels: 

 
SNRdB

 = 10 log10(SNR) (4.35) 

 
Thus an SNR = 13 dB means that the signal power is twenty times higher than the 

noise power, while SNR = 0 dB means equal signal and noise power. 

 
Drill Problem 39 An amplifier has an input SNR of 12 dB. Calculate the noise power 

at the input if the signal power is −40 dBm. 

 
Drill Problem 40  A signal 6 cos(2πf t) V with f  = 200 Hz is fed to the input of the filter 

in drill problem 37. Taking the values of drill problem 38 compute the signal-to-noise 

ratio at output of the filter. 

 
 

4.4 Naturally Occurring Noise 

 
Natural radio noise in telecommunication systems is both picked up by the antenna as 

well as generated within the system itself. The first effect can be accounted for by the 

contribution which it makes to the antenna noise temperature. Attenuation due to water 

vapor and oxygen, clouds and precipitation is accompanied by thermal noise, lightening 

and other atmospherics which further degrades the applicable signal-to-noise ratio. In 

addition, extraterrestrial noise of thermal or non-thermal origin may be picked up by the 

receiving antenna. 

This section gives an overview of the different types of naturally occurring noise and 

defines appropriate quantities for modelling the effect of this noise. To start with, we 

state Planck’s radiation law, which is the the basis for other types of noise. 

 

Planck’s Law 

 
In 1900, Max Planck found the law that governs the emission of electromagnetic radi- 

ation from a black body in thermal equilibrium [Planck, 1900]. A black body is simply 

defined as an idealized, perfectly opaque material that absorbs all the incident radia- 

tion at all frequencies, reflecting none. A body in thermodynamic equilibrium emits to 
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its environment the same amount of energy it absorbs from its environment. Hence, in 

addition to being a perfect absorber, a blackbody also is a perfect emitter. The essential 

point of Planck’s derivation is that energy can only be exchanged in discrete portions 

or quanta equal to hf , where h is Planck’s constant h = 6.626 × 10−34 Js and f is the 
frequency in Hertz. 

Then, the energy of the ground level (or state) is 0, of the first level hf , of the second 

level 2hf and so on. In general: 

Ev  = n · hf for v = 0, 1, 2 . . .  (4.36) 

where v is the level or state number. Given the number Nv of energy quanta (in Planck’s 

publications these are referred to as energy elements) occupying level v results in an 

energy of vNvhf for that level. The total energy is obtained by summing up over all 

states, thus 

Etot = N0 · 0+ N1hf + N2 · 2hf + N3 · 3hf + . . .  (4.37) 

Now according to quantum mechanics, the probability of occupying an energy level 

goes down with e−∆E/kT where k = 1.38 × 10−23 J K−1 is the Boltzmann constant, T is 
the absolute temperature in Kelvin, and ∆E the excess energy.  Then, the number of 

energy quanta N1 at the first level is given by the number at ground state N0 multiplied 

by the probability e−hf/kT . Similarly N2 = N1e−hf/kT = N0e−2hf/kT and so on. The total 
number of quanta is : 

Ntot = N0 

.
1+ e−hf/kT  + e−2hf/kT + e−3hf/kT  + . . .  

Σ 
(4.38) 

To determine the average energy, we divide the total energy by the total number of 

energy quanta. The expression can be simplified to give: 

hf 
 

E(f ) =    

ehf/kT − 1 
(4.39) 

 

Using the density of modes we find Planck’s law for the black body radiation. Ex- 

pressed in terms of the brightness of the radiated energy from a blackbody this is given 

by: 

Bf (f ) =  

 

 

4.4.1 Thermal Radiation 

2hf 
3
 

c2 

1 
(4.40) 

ehf/kT − 1 

 

Thermal radiation is system inherent and is generated through the random thermal 

motion of electrons in a conducting medium such as a resistor. The path of each 

electron is randomly oriented due to interaction with other electrons. The net effect 
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V 

n .
R + Z 

. 
V 

 

of the electron motion is a random current flowing in the conduction medium with an 

average value of zero. The power spectral density of thermal noise is given by Planck’s 

distribution law (4.39). For the normal range of Temperatures and frequencies well 

below the optical range the parameter hf/kT is very small, so that ehf/kT ≈ 1+ hf/kT, 

and (4.39) can be approximated by: 
 

Sn(f ) = kT (4.41) 

 
The power spectral density as given by (4.41) is independent of frequency and hence 

is referred to as white noise spectrum. Within the bandwidth B the available noise 

power then is 

Pn = kTB (4.42) 

 
The above expression shows, that if the bandwidth is fixed it is sufficient to know the 

temperature in order to be able to compute the noise power. This is the reason, why it 

is common to speak of the noise temperature when referring to the noise power (even 

if the noise source is not thermal). 

For T =300 K, i.e. at room temperature, we get a noise power of NT = −114 dBm per 

MHz bandwidth. It is worth remembering this number as a reference and using it to 

compute the approximate noise power for a given bandwidth. For example the noise 

power for a 20 MHz system would be NT = −101 dBm. 

Knowing the available power to the network, we want to define the cirucit equivalent 

of the noisy resistor. This is done by considering a voltage source of rms voltage Vn 

connected in series with the resistor R. 

R 
 

 

R Vn 

 
 

 

Figure 4.8: Noisy resistor connected to a network (left) and its equivalent circuit (right) 

 
The noise power delivered to a network of input impedance Zin is: 

 

P  = 
. n . 

R
 

 

(4.43) 

where Rin is the resistive component of Zin. If Zin = R, which is the condition for 

maximum power transfer, we find that 
 

2 

Pn = n 
4R 

 
(4.44) 

in 

Zin 

 
 

Passive 
network 

in 

  
 

Passive 
network 

  

  
Zin 
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n 

Σ 

 

Substituting for Pn from (4.42) and solving for Vn gives 

Vn = 

.

v2 (t) = 2
√

kT RB (4.45) 

4.4.2 Extraterrestrial Noise 

 
Space is the source of mostly broadband noise which can be considered as plane elec- 

tromagnetic waves. Cosmic radiation has to be accounted for if either the main lobe or 

the sidelobes of the receiving antenna are directed towards space. The noise sources 

are both thermal and non-thermal emission from the Sun, the Moon, the Cassiopeia 

and planets and from elsewhere in our galaxy and other galaxies. 

If the emission is of thermal origin its contribution to noise power can be described 

through the spectral brightness as given in (4.40) which is the power density in Watt 

per unit solid angle per unit area per Hertz. At radio-frequencies where hf ≪ kT the 

spectral brightness Bf is given by the Rayleigh-Jeans law: 

 
 
 

where 

B = 
2kTc 

f 
λ2 in 

Watt 

m2 · sr · Hertz 

Σ 

(4.46) 

Tc is the brightness temperature, 

λ is the wavelength and 

k is Boltzmann’s constant 

 

The actual noise power received within a narrow frequency range depends on the 

direction of the main lobe and the side lobes of the receiving antenna and on the 

effective area of the antenna. Thus in general the spectral brightness of an extended 

source is a function of the direction relative to the antenna coordinates. For discrete 

sources (such as the Sun), which lie within the main lobe of the antenna and subtend 

a solid angle Ωs that is much smaller than the antenna main-beam solid angle, the 

spectral power density becomes 
 

p = 
2kTc 

Ω
 

 

W m−2 Hz (4.47) 
λ2 s 

 

Further use of the spectral brightness will be made in a later section when the total 

noise power percepted by an antenna will be evaluated in detail. 

In the general case Bf varies as λn where n is known as the spectral index. Thus for 

the thermal emission of a black body n = −2. For non-thermal emission (4.46) can still 

be used but the brightness temperature Tc is no longer related to the thermal emission 
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but is an equivalent brightness temperature, in addition the spectral index has to be 

specified. 

 
Background Radiation: The entire Universe is saturated with what is known as 

microwave background radiation, a remnant of the Big Bang. After the Big Bang, the 

formation of matter, space and time out of virtually nothing, the prevailing temperatures 

were at first almost inconceivably high. However, as the Universe expanded the tem- 

perature sank to approximately −270 ◦C, the temperature that it is today. The expansion 
of space lengthened the wavelength of the electromagnetic radiation until it entered the 

microwave range. Today, this radiation can be measured reaching us evenly from all 

directions of space, thus the term “background radiation”. It would “heat up” any colder 

object to the space temperature of 3K (note that absolute zero Kelvin is −273 ◦C) 
 
 
 

 

 
 

 
Figure 4.9: Temperature of the cosmic microwave background radiation as determined 

with the COBE satellite during the first two years of observation. The plane 

of the Milky Way Galaxy is horizontal across the middle of each picture. The 

temperature range is 0 – 4K for the top, 3.3 mK for the middle, and 18 µK for 

the bottom image respectively. 
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4.4.3 Absorption Noise 

 
When energy is absorbed by a body the same energy is reradiated as noise as shown 

by the theory of black body emission. Otherwise the temperature of some bodies would 

rise and that of others fall. In the case of a radiating antenna the energy is partially 

absorbed by the atmosphere and reradiated as noise. The effective absorption noise 

temperature Tab given as a function of the ambient temperature Ta and the attenuation 

La is: 

Tab = Ta(La − 1) (4.48) 

Note that Tab is not identical to the physical (ambient) temperature of the atmosphere 

and increases with increasing atmospheric attenuation. Table 4.1 shows some values 

for La and Tab when the ambient temperature Ta is 300K. 

 

La [dB] 0 1 3 10 

La (power ratio) 1 1.26 2 10 

Tab [K] 0 78 300 2700 

 
Table 4.1: Absorption noise temperature Tab for different values of attenuation and an 

ambient temperature Ta = 300K 

 
The Attenuation of the atmosphere depends strongly on frequency. Water vapour 

and oxygen cause a high atmospheric attenuation in the 20GHz and 60GHz frequency 

bands. The frequency band below 10GHz exhibits the lowest noise temperature. 

 
 

4.4.4 Additional Natural Noise Sources 

 
Two additional types of noise should be mentioned here, these are: 

 
Shot noise: this type of noise occurs when the quantisation of electrical charge carrier 

become manifest. It arises in physical devices when a charged particle moves 

through a potential gradient without collision and with a random starting time. 

This is the case in vacuum tubes due to the random emission of electrons from 

the cathode and in many semiconductor components as a result of the diffusion 

of minority carriers and the random generation and recombination of electron- 

hole pairs. For these cases the power spectral density is approximately flat up to 

frequencies in the order of 1/τ , where τ is the transit time or lifetime of the charge 

carriers. In terms of the mean current, the power spectral density is 

Sshot = qi(t) + 2πi(t)
2
δ(f ) (4.49) 
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where q is the charge of an electron = 1.6 · 10−19
 coulomb. The first term in (4.49) 

corresponds to the ac or fluctuation part of the noise current and the second term 

corresponds to the nonzero mean value. 

1/f noise: lots of components exhibit 1/f noise which appears at low frequencies (de- 

pending on the process below 1MHz, 10kHz or 1kHz). There exist several the- 

ories about the origin of this noise which is difficult to measure due to the low 

frequency. 
 
 
 
 
 

Bibliography 

 
[Misra and Moreira, 1991] Misra, T. and Moreira, A. (1991). Simulation and perfor- 

mance evaluation of the real-time processor for the E-SAR system of DLR. Tech. 

note, German Aerospace Center, Microwaves and Radar Institute. 

[Papoulis, 1984] Papoulis, A. (1984). Probability, random variables, and stochastic 

processes. McGraw-Hill, 2 edition. 

[Planck, 1900] Planck, M. (1900). Zur Theorie  des Gesetzes der Energieverteilung 

im Normalspectrum. contained in Verhandlungen der Deutschen Physikalischen 

Gesellschaft, (2, jahrgang 2):237–245. 

[Proakis, 1989] Proakis, J. G. (1989). Digital Communications. McGraw-Hill, 2 edition. 

[Stremler, 1982] Stremler, F. G. (1982). Introduction to Communication Systems. 

Addison-Wesley, 2 edition. 

[Widrow et al., 1996] Widrow, B., Kollár, I., and Liu, M.-C. (1996). Statistical theory of 

quantization. IEEE Transactions on Instrumentation and Measurement Magazine, 

45(2):353–361. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



106 

 

 

   channel 1    beamformer  

B() L 
s1(t) 

T G,NF w 1 

antenna transmission 

line amplifier 

s2(t) w 2 

sN(t) w N 

σ 

5 Noise Applications 

 
Consider the multi-channel communication system of Fig. 5.1. For each channel, an 

antenna is connected to an amplifier (receiver) through a lossy transmission line. The 

beam-former multiplies the signal of each channel by a complex weight and sums up all 

the weighted signals. In this section we shall develop expressions for the noise power 

at the output of each stage of the system. This will include the contribution of the noise 

percepted by the antenna, the absorption noise of the transmission line, the thermal 

noise of the receiver and the effect of the beam-former. 

 

 

Figure 5.1: Microwave receiver system 

 
 
 

5.1 Noise Performance of Cascaded Devices 

 
It is convenient to develop a concise way to describe the amount of noise added to a 

signal passing through a device relative to a fixed standard. The signal-to-noise ratio 

is used to determine the degree of noise contamination of the signal. This leads  to 

the definition of the noise figure as a figure-of-merit in comparisons between different 

devices. Using the noise figure it is easy to determine the noise performance of a 

number of cascaded devices, where each device contributes to the total noise at the 

output of the chain. 
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5.1.1 Noise Figure 

 
Any real device always adds some noise so that the input signal-to-noise ratio is higher 

than the output signal-to-noise ratio. To measure the amount of degradation, we define 

a noise figure, NF , to be the ratio between the input and output signal-to-noise ratios, 

respectively: 

NF  = 
SNRin 

SNRout 
(5.1) 

By definition, a fixed value for the input noise power is used when determining the 

noise figure of a device using (5.1). This noise power is equivalent to the thermal noise 

power provided by a resistor (as described in section 4.4.1) matched to the input and 

at a temperature of T0 = 290 K. 

The noise figure is commonly expressed in decibels: 

NF dB
 = 10 log10(NF ) (5.2) 

 
The noise figure of a perfect noise free device is unity (or 0 dB), and the introduction 

of additional noise causes the noise figure to be larger than unity, i.e. NF dB
 > 0 dB. 

 

Nin NinG+Nadded Nin+Ne NinG+NeG 

 

Figure 5.2: Noisy two port device and its equivalent model 

 
Consider the two port device A as shown in Fig. 5.2 with the transfer function H(f ) 

and the equivalent noise bandwidth BN . The gain of the device, defined as the ratio of 

the signal output power to the signal input power, is G. Thus the output signal power 

is1 Sout = SinG. The output noise power consists of the amplified input noise NinG in 

addition to the noise added by the device itself Nadded, thus Nout = NinG + Nadded. To 

describe this added noise an equivalent noise free device A′ will be assumed with a 

noise generator at its input such that the total output noise of A and A′ are equal. As 
shown in Fig. 5.2 the output noise becomes Nout = NinG + NeG and through (5.1) the 

noise figure can be represented as 
 

NF = 
SNRin 

SNRout 
=  

Sin/Nin 

SinG/(NinG + NeG) 
= 1 +  

Ne
 

Nin 
(5.3) 

 
 

1for simplicity we will write So ut,i n insted of PSout,in , and No ut,i n instead of PNout,in . These quantities 

denote the total power as described in section 4.2.4 equation (4.21) 

Sin SinG 

A 

Sin SinG 

A' 



 

 

∫ 
F (f )|H(f )| N 

∫ 
|H(f )| N 
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The additional noise can be assumed to originate from an equivalent thermal noise 

source at temperature Te thus Ne = kTeBN . By definition the input noise is Nin = kToBN 

and substituting into (5.3) gives 

NF = 1 + 
kTeBN

 

kToBN 
= 1 + 

Te
 

To 
(5.4) 

It should be noted that the effective temperature Te is only the equivalent physical 

temperature of a resistor that generates the same noise power as the device, the ac- 

tual noise source might not be thermal. Nevertheless (5.4) gives a simple formula to 

calculate the effective temperature given the noise figure. The noise figure is useful for 

comparing different systems regarding their noise performance. The noise tempera- 

ture on the other hand can be effectively used to calculate the actual amount of noise 

present in the system. 

A better understanding of the meaning of the noise figure is possible by rewriting 

equation (5.3) 

NF = 1 + 
Ne

 = 
Nin + Ne = 

G(Nin + Ne) 
= 

Nout 
. (5.5) 

Nin Nin GNin GNin 

From the above expression it is seen that the noise figure can be defined as the ratio 

of the total output noise to the total output noise of the noise free device, i.e. 
total output noise 

NF = 
total output noise of noise free device 

(5.6) 

Note: At the first glance (5.4) and (5.5) seem to be frequency independent since the 

noise figure is not dependent on the transfer function of the device. The justification 

would be that both noise and signal pass through the same device, so that |H(f )| 

cancels out when forming the signal-to-noise ratio. This however is not correct since 

the noise generated within the device Nadded will be frequency dependent in most cases, 

thus we should write Te(f ) and keep in mind that F in (5.4) can at most be assumed 

constant within some frequency range. Based on (5.5) we can write an expression for 

the band noise figure NF which is frequency independent and gives the noise figure 

for the total frequency band 

NF = 

∞ 
2 

indf 
0 

∞ 

F (f )|H(f )|2df 
= 

 

∞ 

F (f )|H(f )|2df 
= 

 

 

(5.7) 
∞ 

2 
indf 

0 

∫∞ 

|H(f )|2df 
 

 

BN |H(fo)|2 

In the above equation the gain G has been replaced by the square of the amplitude 

of the transfer function |H(f )|2 which gives the relation between the input and output 

spectral power density (see (4.28)). The total output noise at each frequency is found 

as the product of the output noise from the noise free device |H(f )|2Nin times the noise 

figure. The last term in (5.7) makes use of the equivalent bandwidth from section 4.3.3. 

0 

0 0 

∫ ∫ 
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1N 

 

5.1.2 Noise Figure in Cascaded Systems 

 
In this section expressions for the noise figure for a combination of cascaded networks 

will be derived. Consider the cascaded two-port devices shown in Fig. 5.3. 
 

Sin1 

Nin1+Ne1 

Sin2 

Nin2+Ne2 
 

 

Sout1=Sin1G1 

Nout1=Nin1G1+Ne1G1 

Sout2=Sin2G2 

Nout2=Nin2G2+Ne2G2 

Figure 5.3: Equivalent model for the transmission of noise through a cascaded system 

 
Using the definition of the noise figure from (5.5) and knowing that the total noise 

power output is Nout2 = G1G2(Nin + Ne1)+ G2Ne2, the noise figure of the system NF12  

will be: 

total output noise NF = 
 = 

G1G2(Nin + Ne1)+ G2Ne2 
 

 
(5.8) 

12 
total output noise of noise free device Nin G1G2 

 

The effective noise temperature of the cascaded system can readily be obtained from 

NF 12 and (5.4). 

Equations (5.8) can be generalised to a series of N cascaded networks [Bundy, 1998]: 
 

NF = 
G1G2 · · ·  GN (Nin + Ne1)+ G2 · · ·  GN Ne2 + · · ·  + GN−1GnNeN−1 + GN NeN  

inG1G2 ··· GN 
(5.9) 

 

If the two-port networks are assumed to have identical input and output impedances, 

it can be shown that the minimum of the equivalent noise figure (or the equivalent 

temperature) can be reached if the networks are arranged with increasing noise figures 

of the individual stages. 

The noise figure of cascaded networks (5.9) provides a simple and convenient way 

to evaluate the noise performance of a system.  An important  point  to note however 

is that the noise figure assumes a perfect match between the input and output of all 

 
A2 

 
A1 

N 
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the networks and the cascaded structure. If this condition is not fullfiled, the easy-to- 

use equations can no longer be applied, the procedure is however straight forward and 

mainly involves the derivations already made. 

 
Drill Problem 41 A receiver for satellite transmissions at 4 GHz consists of an antenna 

preamplifier with a noise temperature of 127 K and a gain of 20 dB. This is followed by 

an amplifier with a noise figure of 12 dB and a gain of 40 dB. Compute the overall noise 

figure and equivalent noise temperature of the receiver. What would be the value of the 

noise figure if the order of the amplifier and preamplifier would be exchanged? Assume 

that the amplifiers are at a physical temperature of 290 K. 

 

 

5.2 Microwave Receiver Noise Temperature 

 
Consider the system shown in Fig. 5.1. The voltage at the terminals of the input of the 

beam-former is 

x(t) = a(φ, ϑ )s(t)+ n(t) (5.10) 

where the first term represents the signal, while the second term is the noise voltage. 

Later the quantity of interest will be the power, which, assuming root-mean-square 

voltages, is written as 

px = ⟨x(t)x∗(t)⟩ = |a(φ, ϑ )|2⟨|s(t)|2⟩ + ⟨|n(t)|2⟩ (5.11) 

where ⟨·⟩ denotes time-domain averaging and ∗ the complex conjugate.  In the above 

it has been assumed that the signal of interest is uncorrelated to the noise, thus 

⟨s(t)n∗(t)⟩ = 0, which is true for a non-multiplicative internal noise contribution. 

In the following we investigate the various noise contributions, up to the input of the 

beam-former. 

 
 

5.2.1 Antenna Noise Temperature 

 
The noise at the output terminals of a lossless antenna, c.f. Fig. ?? is considered. All 

real antennas are directional antennas [Balanis, 1997], which is the property of radi- 

ating or receiving electromagnetic waves more effectively in some directions than in 

others. The directional properties of an antenna can be described through the radia- 

tion pattern (c.f. section 1.5). If we assume spherical coordinates, the radiation pattern 

C(θ, ψ) gives the ratio of the field strength in a given direction (θ, ψ) from the antenna 

to the maximum field strength. Whether we are dealing with a receiving or transmitting 
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2 

∫∫ 

 

antenna is indifferent for the definition of C(θ, ψ). Since the radiation pattern is normal- 

ized to the maximum value, the ratio of power density to maximum power density is 

given through C2
(θ, ψ). When dealing with the received noise by the antenna, we will 

use the radiation pattern as a weighting function to combine the effect of the different 

noise sources with the directional properties of the antenna. 

All noise sources contributing to the total noise power received by the antenna will 

be represented through their brightness B as described in section 4.4.2. As seen by 

the antenna, the brightness will be a function of direction (θ, ψ) referred to the antenna 

coordinates. The spectral density per unit area of the noise power is than given by: 

s = 
1 
∫∫  

B(θ, ψ)C
2
(θ, ψ)dΩ [watt/m

2
 · Hz] (5.12) 

 

 

 

In the above equation the noise is assumed to be unpolarised while the antenna is 

assumed to receive one single polarisation; this is the reason of the factor of 1/2 since 

only half the noise power is received. Within the bandwidth ∆f around the centre 

frequency fo the power density is 

∫ fo+∆f/2 1 
∫∫  

 
 

 
 

The available power at the antenna terminals is calculated using the effective an- 

tenna area Ar which by definition is the area when multiplied by the incident power 

density gives the power delivered to the load (c.f. section 1.5). The effective area and 

the radiating pattern are related through 

 
Ar = 

4π 

λ2 

C2(θ, ψ)dΩ 

 
(5.14) 

 

Using Ar and (5.13) to calculate the available noise power Nant we get 

Ar 
∫ fo+∆f/2 ∫∫  

 
  

 

In the above equation the inner integral stands for the summation over all noise 

sources. The noise power depend strongly on the environment and look direction of 

the antenna. An antenna pointing towards empty space will have a very low noise 

temperature in the order of 3K provided the side lobes aren’t pointing towards a noisy 

environment. A narrow-beam antenna on the other hand with its beam directed to- 

ward the sun might encounter a noise temperature up to 300 000 K. The outer integral 

in (5.15) sums the noise power for the frequency band of interest and the multiplica- 

tion factor of Ar transform the power density at the antenna to the available power at 

4π fo−∆f/2 2 

4π 2 fo−∆f/2 

4π 

S = B(θ, ψ)C
2
(θ, ψ)dΩ df [watt/m

2
] (5.13) 

Nant = B(θ, ψ)C
2
(θ, ψ)dΩ df (5.15) 
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0 
c 

 

the antenna terminals, thus the effective area will also include the effect of antenna 

mismatch. 

An expression as given by (5.15) is not practical when dealing with or comparing 

different receiving antennas. What is needed is a simple figure-of-merit such as the 

equivalent noise temperature of the antenna, which can be found by simplifying (5.15). 

A narrow bandwidth ∆f is assumed such that the spectral brightness (4.46) can con- 

sidered constant2  over ∆f  .  In addition,  if the integration of the spectral brightness  

is compared to the integration of the frequency transfer function as described in sec- 

tion 4.3.3, an equivalent bandwidth BN can be introduced which reduces the integra- 

tion over ∆f to the multiplication by the equivalent bandwidth at f0 = c/λ0, thus (5.15) 

becomes 

 
Nant = 

Ar 
∫ fo+∆f/2 ∫∫  

 

2kTc(θ, ψ) 
 

 

 

 
C

2
(θ, ψ)dΩ df (5.16) 

2 fo−∆f/2 4π λ 

Ar 
∫ f +∆f/2 2k 

∫∫  
  

 
Tc(θ, ψ)C

2
(θ, ψ)dΩ df 

2 f −∆f/2   λ
2 

4π 

 

= A B 
k 
∫∫  

 
 

 

 

 
T (θ, ψ)C

2
(θ, ψ)dΩ 

inserting (5.14) into the above equation gives 

Σ ∫∫
4π

 Tc(θ, ψ)C
2
(θ, ψ)dΩ

Σ
  (5.17) 

Nant = k ∫∫
4π

 BN 
C2(θ, ψ)dΩ 

 

Comparing the above equation with (4.42) for the thermal noise power from a resistor 

immediately suggest the definition of an equivalent antenna noise temperature Tant of 
the form 

∫∫
4π

 Tc(θ, ψ)C
2
(θ, ψ)dΩ  (5.18) 

Tant = ∫∫
4π

 C2(θ, ψ)dΩ 
 

If the antenna is replaced by a resistance Rr at temperature Tant, then according to 

(5.17) this resistance will generate the same noise power as by the antenna. 

Consider a lossless microwave antenna placed inside an anechoic chamber main- 

tained at a constant temperature T as illustrated in Fig. 5.4. The absorbing chamber 

completely encloses the antenna and is covered by absorbing materials which act as 

blackbody radiators. The power received by the antenna due to emission of the cham- 

ber is given by (5.17) with the brightness temperature Tc(θ, ψ) replaced by the constant 

temperature T seen by the antenna. Solving the integral we get 

Σ ∫∫
4π

 TC
2
(θ, ψ)dΩ

Σ
  (5.19) 

Nant = k ∫∫
4π

 C2(θ, ψ)dΩ 
BN = kTBN 

 
 

2note that the spectral brightness depends on frequency through 1/λ2
 = f 2/c2. 

λ 

2 

4π 

= 
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Nout = kTBN 

 
 
 

 

Figure 5.4: Noise power of an antenna placed inside an absorbing chamber 

 
which is the same power available from a resistor at temperature T as given in sec- 

tion 4.4.1. From the standpoint of an ideal receiver of bandwidth BN , the antenna 

connected to its input terminals is equivalent to a resistance Rr known as the antenna 

radiation resistance. Although in both cases the receiver is connected to a “resistor” 

in the case of the real resistor the noise power available at its output terminal is deter- 

mined by the physical temperature of the resistor, while in the case of the antenna the 

power available is determined by the temperature of the blackbody enclosure, whos 

walls may be at any distance from the antenna. Moreover, the physical temperature of 

the antenna structure has no bearing on its output power as long as it is lossless. 

An important perception from (5.19) is that the total noise power received by an 

antenna is independent of the radiation pattern of the antenna if the surrounding envi- 

ronment is assumed to have a constant brightness temperature. 

 

Drill Problem 42 A reflector antenna used for geostationary satellite receiving is po- 

sitioned such that its main beam lies at 37◦ above the horizon. For simplicity the  

main beam is supposed to extend over ±1◦ both in elevation and azimuth as shown  
in Fig. 5.5(a). The value of the radiating pattern outside the main beam is −32 dB. 

As shown in Fig. 5.5(b), the antenna ’sees’ the sky with a brightness temperature of 

Tc,sky = 2K for θ < 90◦, the sun at Tc,sun = 8000 K within a solid angle of Ωs = 0.5◦ and 

the earth at Tc,earth = 300 K for θ > 90◦. Calculate the antenna noise temperature with 
the sun outside the main beam of the antenna. 

 

 
5.2.2 Transmission Line 

 
The noise temperature of a lossy transmission line can be calculated using the results 

of section 4.4.3. Consider the transmission line shown in Fig. 5.1. If the transmission 

line is at the physical temperature Tp and has an attenuation of LT = 1/GT = Pin/Pout, 

then the equivalent noise temperature TeT at the input of the transmission line as given 

Antenna 

Antenna 
radiation 
pattern 

 

 
Absorber, T 
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Figure 5.5: (a) Antenna pattern (not to scale) and (b) Brightness temperature 

 

by (4.48) is  
TeT  = Tp(LT − 1) (5.20) 

which corresponds to a thermal noise power of kTeT BN . If the transmission line is 

connected to the terminals of an antenna having the noise temperature Tant, the total 

noise power at the input of the transmission line becomes NinT = k(TeT + Tant)BN . The 

noise power at the output of the transmission line is then 

 

NoutT = 
NinT 

LT 
= 

kTp(LT − 1)BN 

LT 
+ 

kTantBN 

LT 
(5.21) 

and the noise temperature at the output becomes 

T = 
Tp(LT − 1) 

+ 
Tant 

  

 
(5.22) 

outT 
LT LT 

which again corresponds to the noise power kToutT BN at the output of the transmission 

line. The above results are only valid if the antenna is matched to the transmission line, 

thus assuming no reflected power at the transmission line terminal. 

In practice, real antennas are not lossless devices. Part of the energy received (or 

transmitted) by the antenna is absorbed by the antenna material in the form of heat 

loss. This would require including the antenna losses when calculation the noise tem- 

perature ToutT . If the calculations are performed, it can easily be seen that the antenna 

losses might as well be included in the transmission line losses without altering the 

results, provided both the antenna and the transmission line are at the same physical, 

i.e. ambient, temperature Tp. This means, that equation (5.22) can be used with the 

antenna losses included in LT . 

 

5.2.3 Amplifier 

 
Until now, the noise contribution of the antenna and the transmission line have been 

considered using the equivalent noise temperature. All quantities are referenced to the 

Sky Tc,sky = 2K 

Earth Tc,earth = 300K 
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Σ 

 

input of the amplifier, i.e. the noise power computed is at the input of the amplifier. Next, 

the aim is to get the noise power at the output of the amplifier, which is the noise power 

that goes into the beam-former. This is equal to the noise power kToutT BN amplified by 

the gain of the G, and added to this we consider the contribution of the amplifier itself 

as given by its noise figure NF . The total output noise power3 then becomes 

⟨|n(t)|2⟩ 
 

 

Ro 

TantG 
+

 

LT 

Tp(LT − 1)G 

LT 
+ T0(NF − 1)G

Σ

 

 
BN (5.23) 

where the connection to the noise term in (5.11) is made. 

 
 

5.2.4 Beam-Forming 

 
Next the beam-forming is considered. To account for the multiple input signals, we add 

the index i where i = 1 . . .  N and N is the total number of inputs (channels) to the 

beam-former. Then (5.10) for channel i becomes 

xi(t) = ai(φ, ϑ )s(t)+ ni(t). (5.24) 

Note that in the above equation, the signal s(t) is not indexed since it is the same to all 

input channels; this is consistent with taking the electric field strength at the antenna 

aperture to be E(t) equally for all channels since it is attributed to a single point source 

at φ, ϑ . 

Beamforming can then be described as the operation 
 

N 

y(t) = wixi(t) (5.25) 
i=1 

 

where wi specify the (complex) unitless weights. Using vector notation, thus writing 

x = [x1(t), x2(t),... , xN (t)]T , this becomes: 

y(t) = wT x = wT a(φ, ϑ )s(t)+ wT n (5.26) 

 
It should be pointed out, that the term wT a(φ, ϑ ) in the above equation can be used 

to explain the antenna array properties and effects; specifically, if normalized, this term 

represents the radiation pattern. 

Now the power py at the output of the beam-former becomes 

py = ⟨y(t)y∗(t)⟩ = ⟨(wT x)(wHx∗)⟩ (5.27) 

3A receiver described through its gain and noise figure could replace the amplifier, as such the descrip- 

tion is rather general 

. 

= k 
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Evaluating the above using (5.26) and simplifying yields: 

py = wHa∗(φ, ϑ )aT (φ, ϑ )w⟨s(t)s∗(t)⟩ + wH⟨u∗uT ⟩w (5.28) 

where the earlier assumption that the signal and noise are uncorrelated is maintained. 

If the noise of the individual channels is taken to be uncorrelated then ⟨ni(t)n∗
j (t)⟩ = 0 

for i ̸= j and ⟨n∗nT ⟩ becomes a diagonal matrix. 
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